Bayesian analysis of an admixture model with mutations and arbitrarily linked markers.
نویسندگان
چکیده
We introduce here a Bayesian analysis of a classical admixture model in which all parameters are simultaneously estimated. Our approach follows the approximate Bayesian computation (ABC) framework, relying on massive simulations and a rejection-regression algorithm. Although computationally intensive, this approach can easily deal with complex mutation models and partially linked loci, and it can be thoroughly validated without much additional computation cost. Compared to a recent maximum-likelihood (ML) method, the ABC approach leads to similarly accurate estimates of admixture proportions in the case of recent admixture events, but it is found superior when the admixture is more ancient. All other parameters of the admixture model such as the divergence time between parental populations, the admixture time, and the population sizes are also well estimated, unlike the ML method. The use of partially linked markers does not introduce any particular bias in the estimation of admixture, but ML confidence intervals are found too narrow if linkage is not specifically accounted for. The application of our method to an artificially admixed domestic bee population from northwest Italy suggests that the admixture occurred in the last 10-40 generations and that the parental Apis mellifera and A. ligustica populations were completely separated since the last glacial maximum.
منابع مشابه
Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملComparison of two QTL mapping approaches based on Bayesian inference using high-dense SNPs markers
To compare different QTL mapping methods, a population with genotypic and phenotypic data was simulated. In Bayesian approach, all information of markers can be used along with combination of distributions of SNP markers. It is assumed that most of the markers (95%) have minor effects and a few numbers of markers (5%) exert major effects. The simulated population included a basic population of ...
متن کاملMolecular Characterization of the Factor IX Gene in 28 Iranian Hemophilia B Patients
Background: Heterogeneous mutations in the human coagulation factor IX gene lead to an X-linked recessive bleeding disorder known as hemophilia B. The disease is distributed worldwide with no ethnic or geographical priority. Materials and Methods: The aim of this study was to characterize the factor IX gene mutations in 28 unrelated Iranian hemophilia B patients. Polymerase chain reaction (PCR)...
متن کاملSPLATCHE2: a spatially explicit simulation framework for complex demography, genetic admixture and recombination
SUMMARY SPLATCHE2 is a program to simulate the demography of populations and the resulting molecular diversity for a wide range of evolutionary scenarios. The spatially explicit simulation framework can account for environmental heterogeneity and fluctuations, and it can manage multiple population sources. A coalescent-based approach is used to generate genetic markers mostly used in population...
متن کاملGenetic Differentiation of Draa Indigenous Breed and Relationships with Other Goat Populations Assessed by Microsatellite DNA Markers
Moroccan goats are characterized by the presence of different populations identified only based on their phenotypes. The objectives of this study were to assess the genetic differentiation of the Draa goat breed and to analyze its genetic structure and its relationships with other local populations using 12 microsatellite markers. The screening was done in South Eastern and Southern Morocco on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 169 3 شماره
صفحات -
تاریخ انتشار 2005